Refine Your Search

Topic

Author

Search Results

Technical Paper

Evaluation of a Continuous Annealed Bake Hardenable Steel for Improved Dent Resistance

1989-02-01
890711
The potential of bake hardenable steel as a substitute for SAE 1008 steel to reduce gage and improve dent resistance is investigated in this report. Outer body panels in particular are susceptible to palm printing and other forms of denting. Conventional SAE 1008 steel and a developmental continuous annealed bake hardenable steel from Inland Steel Company are compared for dent performance properties. Bake hardenable (BH) steel is a medium strength (200-350 MPa) steel that receives an increase in yield strength during the heating of the paint bake cycle. An increase in yield strength would result in an increase in dent resistance. The increase in dent resistance is more quantitatively evaluated by comparing the BH steel with the current production material (SAE 1008) of a rear compartment lid outer.
Technical Paper

Describing the Truck Driver Eye and Head Accommodation Tools

1987-08-01
871531
Truck driver eye and head position tools have been developed to describe where certain percentages of truck drivers position there eyes and heads in various workspace arrangements. Separate equations describe the accommodation level for driver populations with male to female ratios of 50/50, 75/25, and a range from 90/10 to 95/5. These equations can be used as a design tool to locate the curves in vehicle space to describe the region behind which the given populations eyes and heads would be located. Equations and curves are provided for both the drivers eye and head in the side view. It has become increasingly apparent that there is a need for improved methods of accommodating truck drivers in heavy truck cab design. Currently, practices used in the automobile industry for passenger car design are utilized for the design of heavy trucks. These practices.
Technical Paper

Describing the Truck Driver Stomach and Shin-Knee Accommodation Tools

1987-08-01
871532
Truck driver shin-knee and stomach postion tools have been developed to describe where certain percentages of truck drivers position there knees and stomachs in various workspace arrangements. Separate equations describe the accommodation level for driver populations with male to female ratios of 50/50, 75/25, and a range from 90/10 to 95/5. These equations can be used as a design tool to locate the curves in vehicle space to describe the region behind which the given populations shin-knees, and stomachs would be located. Equations and curves are provided for both the left leg, which operates the clutch, and the right leg, which operates the accelerator.
Technical Paper

Front Suspension Multi-Axis Testing

1987-11-01
872255
A front suspension laboratory test procedure was developed to reproduce time-correlated fatigue damaging events from a light truck road durability test. Subsequently, the performance of front suspension systems for the GMT 400 light truck program were evaluated in terms of customer reliability. Both prototype and pilot testing, as well as computer modeling, were used in the evaluation.
Technical Paper

The Mvma Investigation Into the Complexities of Heavy Truck Splash and Spray Problem

1985-01-01
856097
Splash and spray conditions created by tractor-trailer combinations operating on the Federal highway system have been studied and tested for many years with mixed results. Past events are reviewed briefly in this paper. In additional testing during 1983, using new state-of- the-art splash/spray suppressant devices, some encouragement was provided that these devices could work. The 1984 Motor Vehicle Manufacturers Association (MVMA) test program was designed to develop practicable and reliable test procedures to measure effectiveness of splash and spray reduction methods applied to tractor-trailer combination vehicles. Over 40 different combinations of splash/spray suppression devices on five different tractors and three van trailer types were tested. The spray-cloud densities for some 400 test runs were measured by laser transmissometers and also recorded by still photography, motion pictures, and videotape. On-site observers made subjective ratings of spray density.
Technical Paper

Racing Car Restraint System Frontal Crash Performance Testing

1994-12-01
942482
This paper presents the results of a series of over 30 impact sled simulations of racing car frontal crashes conducted as part of the GM Motorsports Safety Technology Research Program. A Hyge™ impact sled fitted with a simulated racing car seat and restraint system was used to simulate realistic crash loading with a mid-size male Hybrid III dummy. The results of tests, in the form of measured loads, displacements, and accelerations, are presented and comparisons made with respect to the levels of these parameters seen in typical passenger car crash testing and to current injury threshold values.
Technical Paper

Eco-labels and Eco-Indices. Do They Make Sense?

2000-04-26
2000-01-1473
Life Cycle Assessments (LCA) of complex systems, such as vehicles and vehicle components, are based on the quantification of the energy, wastes, and emissions associated with the material production, manufacturing, use and end of life of the product. However, the volume of information needed to provide a comprehensive assessment of the environmental burdens is large and complicates the decision process in choosing among alternatives. For this reason people have attempted to simplify the information by collapsing it into a single index, which essentially assigns a score to a product of being “good” or “bad”. Even though such an approach looks attractive to the decision-makers that want simple answers based on meaningful data, the results may be misleading.
Technical Paper

Refinement and Verification of the Structural Stress Method for Fatigue Life Prediction of Resistance Spot Welds Under Variable Amplitude Loads

2000-10-03
2000-01-2727
The work presented here builds on the practical and effective spot weld fatigue life prediction method, the structural stress method (SSM), that was developed at Stanford University. Constant amplitude loading tests for various spot weld joint configurations have been conducted and the SSM has been shown to accurately predict fatigue life. In this paper refinements to the structural stress approach are first presented, including a variable amplitude fatigue life prediction method based on the SSM and Palmgren-Miner's rule. A test matrix was designed to study the fatigue behavior of spot welds under tensile shear loading conditions. Constant amplitude tests under different R-ratios were performed first to obtain the necessary material properties. Variable amplitude tests were then performed for specimens containing single and multiple welds.
Technical Paper

Rapid Hydrocarbon Speciation and Exhaust Reactivity Measurements using High Speed, High Resolution Gas Chromatography

2000-10-16
2000-01-2950
The ozone forming potential (OFP) and specific reactivity (SR) of tailpipe exhaust are among the regulated factors that determine the environmental impact of a motor vehicle. OFP and SR measurements require a lengthy determination of about 160 non-methane hydrocarbon species. A rapid gas chromatography (GC) instrument has been constructed to separate both the light (C2 - C4) and the midrange (C5 - C12) hydrocarbons in less than 10 minutes. The limit of detection was about 0.002 parts per million carbon (ppmC). Twelve exhaust samples from two vehicles were analyzed to compare the rapid GC method with the standard GC method, which required 40-minute analyses on two different instruments. Speciation and reactivity data from the two methods were comparable. The increased sample throughput of rapid GC promises to improve OFP and SR measurements, particularly when good statistical data are necessary to insure accurate, precise results for low emission vehicles
Technical Paper

Low-Power Flexible Controls Architecture for General Motors Partnership for a New Generation (Pngv) Precept Vehicle

2000-11-01
2000-01-C060
The complexity of designing and implementing a vehicle electrical control system for ultra fuel-efficient hybrid vehicles is significantly greater than that of a conventional vehicle. To quickly demonstrate and iterate capabilities of these vehicles, an efficient and rapid means for developing requirements, mapping these into an electrical control and communications architecture, and developing prototype systems is needed. The General Motors Precept concept vehicle is an example of an energy- efficient vehicular control system developed using a "requirements to software'' development process and electronic controller infrastructure that demonstrates these attributes. The Precept is General Motors Corporation's technology demonstration concept vehicle developed to address General Motors Corporation's commitment to the Partnership for a New Generation (PNGV) program.
Technical Paper

The Effects of Head Gasket Geometry on Engine-Out HC Emissions from S.I. Engines

1999-10-25
1999-01-3580
This study evaluated multi-layer steel and composite head gaskets of various thicknesses (0.43 to 1.5 mm) and fire-ring diameters to determine the influence of head gasket crevices on engine-out hydrocarbon (HC) emissions. The upper limit in the percent reduction in HC emissions from gasket-design modifications is estimated to be about 15%. At part-load conditions, the lowest HC emissions were measured for head-gasket thickness of about 1 mm. Significantly smaller thicknesses of the order of 0.4 mm result in an increase in HC emissions. Substantial hydrocarbon-emissions advantage may be realized by minimizing the gasket-to-cylinder bore offset.
Technical Paper

Form vs. Function: A Systems Approach to Achieving Harmony

1999-03-01
1999-01-1266
Today's world places increased emphasis on society's members to know more, to do more, to see more. Increasingly, information is thrown to the consumer that he/she has to process almost continually, regardless of their surroundings. Due to this heightened need, the customer is becoming increasingly perceptive of their vehicle surroundings, expecting their vehicle to be an extension of their home and/or office, to assist in getting things done in an environment that is as convenient and comfortable as their primary workplace. Similarly, there is also increased emphasis on vehicles to be styled so that they are visually appealing, so that all the parts work as a whole to make the environment as enjoyable as consumers' most pleasant surroundings outside the vehicle.
Technical Paper

Diurnal Emissions from In-Use Vehicles

1999-05-03
1999-01-1463
One hundred fifty-one vehicles were recruited from the I/M lane in Mesa, AZ during the summer of 1996, and their 24 hour diurnal emissions were measured in a variable temperature SHED (VT-SHED). The fleet selection included the earliest applications of evaporative emission control, and later technologies that had at least 5 years of exposure. Model years 1971 through 1991 were tested. Fifty-three percent of the sample tested had daily emissions of more than 10 grams. Five of the 151 were over 50 grams per day, and had significant liquid leaks. Twenty-six (17%) of the vehicles had emissions exceeding one gram per hour. Thirty-two of the 151 tested (21%) had identifiable liquid leaks. Carburetor systems had higher emissions than fuel injection systems. The highest emitters had resting losses of more than 0.8 g/hr. These eight highest emitters were considered outliers for the purposes of general analysis, and were not used, as is noted in the report.
Technical Paper

Improved Emissions Speciation Methodology for Phase II of the Auto/Oil Air Quality Improvement Research Program - Hydrocarbons and Oxygenates

1993-03-01
930142
Analytical procedures for the speciation of hydrocarbons and oxygenates (ethers, aldehydes, ketones and alcohols) in vehicle evaporative and tailpipe exhaust emissions have been improved for Phase II studies of the Auto/Oil Air Quality Improvement Research Program (AQIRP). One gas chromatograph (GC) was used for measurement of C1-C4 species and a second GC for C4-C12 species. Detection limits for this technique are 0.005 ppm C or 0.1 mg/mile exhaust emission level at a chromatographic signal-to-noise ratio of 3/1, a ten-fold improvement over the Phase I technique. The Phase I library was modified to include additional species for a total of 154 species. A 23-component gas standard was used to establish a calibration scale for automated computer identification of species. This method identifies 95±3% of the total hydrocarbon mass measured by GC for a typical exhaust sample. Solid adsorbent cartridges or impingers were used to collect aldehydes and ketones.
Technical Paper

General Motors DEXRON®-VI Global Service-Fill Specification

2006-10-16
2006-01-3242
During early 2005 General Motors released a newly developed ATF for the factory fill of all GM Powertrain stepped gear automatic transmissions. The new fluid provided significantly improved performance in terms of friction durability, viscosity stability, aeration and foam control and oxidation resistance. In addition, the fluid has the potential to enable improved fuel economy and extended drain intervals. Since the performance of the new fluid far exceeded that of the DEXRON®-III service fill fluids available at the time it became necessary to upgrade the DEXRON® service fill specification in order to ensure that similar fluids were available in the market for service and repair situations. This latest upgrade to the service fill specification is designated DEXRON®-VI [1].
Technical Paper

Vehicle Cross Wind Air Flow Analysis

1997-04-08
971517
CFD (Computational Fluid Dynamics) has been used to analyze vehicle air flow. In cross wind conditions an asymmetrical flow field around the vehicle is present. Under these circumstances, in addition to the forces present with symmetric air flow (drag and lift forces and pitching moment), side forces and moments (rolling and yawing) occur. Issues related to fuel economy, driveability, sealing effects (caused by suction exerted on the door), structural integrity (sun roof, spoiler), water management (rain deposit), and dirt deposit (shear stress) have been investigated. Due to the software developments and computer hardware improvements, results can be obtained within a reasonable time frame with excellent accuracy (both geometry and analytical solution). The flow velocity, streamlines, pressure field, and component forces can be extracted from the analysis results through visualization to identify potential improvement areas.
Technical Paper

Rollover and Drop Tests - The Influence of Roof Strength on Injury Mechanics Using Belted Dummies

1990-10-01
902314
This report presents the test methods and results of a study involving lap/shoulder belted dummies in dynamic dolly rollover tests and inverted vehicle drop tests. Data are presented showing dummy neck loadings resulting from head impacts to the vehicle interior as the vehicle contacts the ground. Comparison of the number and magnitude of axial neckloads are presented for rollcaged and production vehicles, as well as an analysis of the factors which influence neckloads under these conditions.
Technical Paper

Aerodynamic Test and Development of the Corvette C5 for Showroom Stock Racing

2002-12-02
2002-01-3333
This pager documents a one shift (10 hour) wind tunnel test program conducted on a Corvette C5 prepared for Sports Car Club of America (S.C.C.A.) World Challenge racing. The testing was conducted at the Canadian National Research Center in Ottawa, Canada. Specific areas of test included front fascia and under tray, rear air discharge, rear wing configuration and angle, B-pillar configuration, and ride height. Standard wind tunnel test procedures were followed. In total twenty-six separate configurations were evaluated. Data for front and rear lift, total drag, and lift/drag (L/D) ratio are provided for each test configuration. The cumulative effects of the aerodynamic changes evaluated in this program, calculated at 192 KPH (120 MPH), increased front down force by 318 N (72 Lb.), and rear down force by 770 N (173 Lb.). Lift/drag ratio was improved from -0.597 to -1.016. These changes increased total drag by 381 N (86 Lb.).
X